Вопрос задан 13.07.2023 в 11:08. Предмет Геометрия. Спрашивает Смаглюк Маша.

Дана трапеция ABCD(AD||BC), диагонали трапеции пересекаются в точке О. Sboc= 4 см², Scod= 8 см².

Найдите площадь трапеции. ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Илахунова Дильхумар.

Ответ: 36 см²

Объяснение:

Площадь трапеции найдём как сумму площадей четырёх треугольников, образованных диагоналями.

1. Рассмотрим ΔBOC и ΔCOD.

Проведём из точки C перпендикуляр CH к стороне BD. Получим, что CH является высотой и ΔBOC, и ΔCOD. Выпишем формулы площади для этих треугольников:

></p>              <p>Найдём частное этих площадей:</p>              <p><img src=

2. ∠BCA = ∠CAD (накрест лежащие углы при BC || AD и секущей AC)

∠CBD = ∠BDA (накрест лежащие углы при BC || AD и секущей BD)

3. Рассмотрим ΔBOC и ΔAOD:

1) ∠BCA = ∠CAD

2) ∠CBD = ∠BDA

Следовательно, ΔBOC и ΔAOD подобны по двум углам.

Причём k = OC : OA = OB : OD = 1/2  ⇒ OA = 2OC

4. Рассмотрим ΔBOC и ΔAOD. Отношение площадей подобных треугольников равно квадрату коэффициенту подобия. То есть:

k^2=\frac{1}{4} =\frac{S_{\Delta BOC}}{S_{\Delta AOD}} \;\;\Rightarrow\;\;S_{\Delta AOD}=4\cdot S_{\Delta BOC}=4\cdot4=16\;cm^2

5. Рассмотрим ΔBOC и ΔABO.

Проведём из точки B перпендикуляр BK к стороне AC. Получим, что BK является высотой и ΔBOC, и ΔABO. Выпишем формулы площади для этих треугольников и преобразуем SΔABO:

><strong></strong></p>              <p><strong>6. Найдём площадь трапеции:</strong></p>              <p><img src=


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, давайте воспользуемся свойством трапеции, которое гласит: "Сумма площадей двух треугольников, образованных диагоналями трапеции, равна половине площади этой трапеции".

Пусть S - площадь трапеции ABCD. Тогда у нас есть:

Sboc = 4 см² - площадь треугольника SBO (где SO - это одна из диагоналей, а B и C - точки пересечения диагоналей).

Scod = 8 см² - площадь треугольника SCO (где SO - это другая диагональ, а C и O - точки пересечения диагоналей).

Таким образом, мы можем записать уравнение для площади S:

S = Sboc + Scod

S = 4 см² + 8 см²

S = 12 см²

Ответ: площадь трапеции ABCD равна 12 квадратным сантиметрам.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос