Вопрос задан 05.07.2023 в 19:43. Предмет Геометрия. Спрашивает Лукашевич Дима.

СРОЧНО ПОМОГИТЕ ПОЖАЛУЙСТА! В правильной четырехугольной призме диагональ равна 9 см, а диагональ

основания равна 4√2 см. Вычислить полную поверхность призмы.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гроссман Мария.

поскольку это правильная четырехугольная призма , то основание  - квадрат . за теоремой Пифагора с треугольника , , где гипотенуза - это диагональ призмы , а один из катетов - это диагональ основы , находи второй катет , который является высотой призмы , он равен 7 см

за теоремой Пифагора с основы находи стороны , они все равны 4 см

площадь основы 16 см² ,   площадь боковой поверхности равна высота на периметр основы = 7×16=112 см

площадь полной поверхности = 2×16 +112=32+ 112 = 144 см²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления полной поверхности правильной четырехугольной призмы мы можем разделить её на несколько частей: две основы и четыре боковых поверхности.

  1. Полная поверхность призмы = 2 * площадь основы + 4 * площадь боковой поверхности.

Для начала, вычислим площади основы и боковой поверхности.

Площадь основы (прямоугольника) можно выразить как произведение его сторон:

Площадь основы = сторона1 * сторона2.

В данном случае у нас есть диагональ основания (4√2 см), и это диагональ прямоугольника. Связь между диагональю и сторонами прямоугольника:

диагональ^2 = сторона1^2 + сторона2^2.

В нашем случае: (4√2)^2 = сторона1^2 + сторона2^2.

32 = сторона1^2 + сторона2^2.

Так как это правильная четырехугольная призма, стороны прямоугольника равны. Значит, можно записать:

2 * сторона1^2 = 32.

Следовательно, сторона1^2 = 16, и сторона1 = 4 см.

Так как стороны прямоугольника равны, сторона2 тоже равна 4 см.

Теперь, площадь одной основы: Площадь основы = сторона1 * сторона2 = 4 см * 4 см = 16 см².

Далее, площадь боковой поверхности.

Площадь боковой поверхности для каждой боковой грани можно выразить как произведение периметра основания на высоту этой боковой грани:

Площадь боковой поверхности = периметр * высота.

Периметр основания = 2 * (сторона1 + сторона2) = 2 * (4 см + 4 см) = 16 см.

Так как это правильная четырехугольная призма, высота боковой грани равна длине диагонали, которая равна 9 см.

Площадь боковой поверхности = 16 см * 9 см = 144 см².

Теперь, подставив найденные значения, можем вычислить полную поверхность призмы:

Полная поверхность призмы = 2 * площадь основы + 4 * площадь боковой поверхности = 2 * 16 см² + 4 * 144 см² = 32 см² + 576 см² = 608 см².

Итак, полная поверхность призмы равна 608 квадратным сантиметрам.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос