
) В равнобедренной трапеции с основаниями 3см и 6 см диагональ образует с ее основаниями угол в
45⁰. Найдите высоту трапеции.

Ответы на вопрос

Ответ:
В равнобедренной трапеции диагонали равны и точкой пересечения делятся попарно на равные отрезки. То есть ВО=СО; МО=АО.
Тогда ∆ВОС и ∆АОМ – равнобедренные с основаниями ВС и АМ соответственно.
Следовательно угол ВСО=угол СВО=45° и угол МАО=угол АМО=45°.
Сумма углов в любом треугольнике равна 180°
Тогда угол ВОС=180°–угол ВСО–угол СВО=180°–45°–45°=90°;
Угол АОМ=180°–угол МАО–угол АМО=180°–45°–45°=90°.
Следовательно треугольники ВОС и АОМ – прямоугольные с прямыми углами ВОС и АОМ соответственно.
В прямоугольном треугольнике ВОС по теореме Пифагора:
ВС²=ВО²+СО²
Пусть ВО=СО=х
3²=х²+х²
2х²=9
х²=4,5
х=√4,5
Тоесть СО=√4,5 см
В прямоугольном ∆АОМ по теореме Пифагора:
АМ²=АО²+МО²
Пусть АО=МО=у
6²=у²+у²
2у²=36
у=√18
Тоесть МО=√18 см
Угол СОМ=180°–угол АОМ=180°–90° (так как углы смежные)
Тогда ∆СОМ – прямоугольный с прямым углом СОМ.
Тогда в прямоугольном треугольнике СОМ по теореме Пифагора:
СМ²=СО²+МО²
СМ²=4,5+18
СМ=√22,5
Проведём высоты СР и ВН к стороне АМ.
Высоты трапеции, проведенные из концов одного основания, к другому, паралельны и равны.
Углы образованные высотой и стороной, к которой проведена высота, прямые;
Тогда ВСРН – прямоугольник, следовательно НР=ВС=3.
Получим два прямоугольных треугольника СРМ и ВНА.
СР=ВН так как высоты трапеции равны, АВ=СМ как боковые стороны равнобедренной трапеции
Значит треугольники СРМ и ВНА равны как прямоугольные по гипотенузе и катету.
Следовательно РМ=АН как соответственные катеты.
Тогда РМ+АН=2РМ.
АМ=АН+НР+РМ
АМ=НР+2РМ
6=3+2РМ
РМ=1,5
В прямоугольном треугольнике СРМ по теореме Пифагора:
СМ²=СР²+РМ²
СР²=СМ²–РМ²
СР²=22,5–2,25
СР²=20,25
СР=4,5
Ответ: 4,5 см




Пусть ABCD - равнобедренная трапеция, где AB = 3 см, CD = 6 см, и угол между диагональю AC и основанием AB равен 45°.
Мы можем рассмотреть треугольник ACD, в котором у нас есть известные стороны и один угол:
Сначала найдем высоту треугольника ACD, которая также будет высотой равнобедренной трапеции ABCD.
Так как треугольник ACD - прямоугольный, мы можем использовать тригонометрические функции для вычисления высоты.
Мы знаем, что угол ACD равен 45°, и CD = 6 см.
Мы можем найти высоту AD (h) с использованием функции синуса:
sin(45°) = h / 6 h = 6 * sin(45°) h = 6 * √2 / 2 h = 3√2 см.
Таким образом, высота равнобедренной трапеции ABCD составляет 3√2 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili