Вопрос задан 25.06.2023 в 15:10. Предмет Геометрия. Спрашивает Морозова Милена.

Paзвepткoй бoкoвoй пoвeepxнocти цилиндрa яв-ся пpямoyгoльник ABCD, гдe BD=8 см, yгoл ABD=60

гpaдycoм. Haйдитe плoщaдь пoлнoй пoвepxнocти цилиндpa, ecли CD выcoтa цилиндpa. Помогите пожалуйста ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Матвеев Глеб.

Ответ:

16√3+24/π см²

Объяснение:

sin<DBA=AD/BD

√3/2=AD/8

AD=8√3/2=4√3 длина окружности цилиндра (формула длины С=2πR).

R=AD/2π=4√3:2π=2√3/π см.

Sосн=πR²=π*(2√3/π)²=12/π см²

cos<DBA=AB/BD

1/2=AB/8

AB=8/2=4см высота цилиндра.

Sбок=С*h=4√3*4=16√3 см²

Sпол=Sбок+2*Sосн=16√3+2*12/π=

=16√3+24/π см²


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади полной поверхности цилиндра, нам нужно разбить эту поверхность на две части: боковую поверхность и два основания.

  1. Начнем с боковой поверхности цилиндра. Боковая поверхность цилиндра представляет собой прямоугольник, который можно развернуть в плоскость. Этот прямоугольник имеет две стороны: одну из сторон основания цилиндра (AB) и высоту цилиндра (CD).

  2. Для нахождения длины стороны AB, мы можем использовать косинус угла ABD. У нас дано, что угол ABD равен 60 градусов, и BD равно 8 см. Используя косинус:

    AB = BD * cos(ABD) = 8 см * cos(60°) = 8 см * 0,5 = 4 см.

  3. Теперь у нас есть длины сторон AB и CD, и мы можем найти площадь боковой поверхности прямоугольника:

    Площадь боковой поверхности = AB * CD = 4 см * CD.

  4. Для нахождения площади одного из оснований цилиндра (круга), нам нужно знать радиус цилиндра. Радиус цилиндра можно найти как половину длины стороны AB:

    Радиус = AB / 2 = 4 см / 2 = 2 см.

  5. Теперь мы можем найти площадь одного из оснований (площадь круга) с использованием формулы:

    Площадь основания = π * радиус^2 = π * (2 см)^2 = 4π см^2.

  6. Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и двух оснований:

    Площадь полной поверхности = 2 * Площадь основания + Площадь боковой поверхности = 2 * 4π см^2 + 4 см * CD.

Теперь вам нужно знать значение CD (высоту цилиндра), чтобы выразить площадь полной поверхности в зависимости от этой высоты. Если вы знаете значение CD, пожалуйста, предоставьте его, и я помогу вам дальше.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос