Вопрос задан 25.06.2023 в 05:42. Предмет Геометрия. Спрашивает Гордеева Софья.

стороны прямоугольника 12 см и 27 см. Найдите периметр квадрата, соответствующий этому

прямоугольнику. срочнооооооооооооооооооооооо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пронюшкіна Аліна.

Ответ:

78см

Объяснение:

Площадь прямоугольника равна произведению его смежных сторон.

Площадь квадрата равна квадрату его стороны.

Многоугольники называются равновеликими, если их площади равны.

Пусть сторона квадрата равна х, тогда исходя из равенства площадей, получим:

12см·27см = x²;

2²·3·3³см² = x²;

x² = 2²·9²см²;

x² = (2·9см)²;

x = 18см т.к. x > 0.

Все стороны квадрата равны, поэтому его периметр (P) в четыре раза больше его стороны.

P = 4·x = 4·18см = 72см.

Ответ: 72см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для найти периметр квадрата, который соответствует прямоугольнику с данными сторонами, нам нужно определить длину стороны квадрата.

Для этого заметим, что у нас есть две стороны прямоугольника: 12 см и 27 см. Выберем из них меньшую сторону (12 см), и это будет длина стороны квадрата. Периметр квадрата вычисляется следующим образом:

Периметр квадрата = 4 * Длина стороны квадрата.

Периметр квадрата = 4 * 12 см = 48 см.

Таким образом, периметр квадрата, соответствующего данному прямоугольнику, равен 48 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос