
В треугольнике abc угол b равен 80 градусов на стороне BC отмечена точка D такая что AB=AD=CD на
отрезке AC отмечена точка E такая что АВ=АЕ найлите угол СЕВ ПОМОГИТЕ ПЖ ПЖ ПЖ ПЖ СРОЧНО

Ответы на вопрос

Ответ:
110
Объяснение:угол равностронник по 1му признаку равенства



Finding the Angle SEV in Triangle ABC
To find the angle SEV in triangle ABC, we need to analyze the given information and apply relevant geometric principles.
Given: - In triangle ABC, angle B is 80 degrees. - Point D is marked on side BC such that AB = AD = CD. - Point E is marked on side AC such that AB = AE.
To find angle SEV, we can break down the problem into smaller steps:
Step 1: Find the value of angle A.
Since AB = AD, we can conclude that triangle ABD is an isosceles triangle. In an isosceles triangle, the base angles are equal. Therefore, angle ABD = angle ADB.
Similarly, since AB = AE, we can conclude that triangle ABE is also an isosceles triangle. Therefore, angle ABE = angle AEB.
Since the sum of the angles in a triangle is 180 degrees, we can write the following equation:
angle A + angle ABD + angle ABE = 180 degrees
Substituting the equal angles, we get:
angle A + angle ADB + angle AEB = 180 degrees
Since angle ADB and angle AEB are equal, we can rewrite the equation as:
angle A + 2 * angle ADB = 180 degrees
Simplifying the equation, we find:
angle A = 180 degrees - 2 * angle ADB
Step 2: Find the value of angle ADB.
Since AB = AD = CD, we can conclude that triangle ACD is an equilateral triangle. In an equilateral triangle, all angles are equal to 60 degrees.
Therefore, angle ADB = 180 degrees - angle ACD = 180 degrees - 60 degrees = 120 degrees.
Step 3: Find the value of angle A.
Substituting the value of angle ADB into the equation from Step 1, we get:
angle A = 180 degrees - 2 * 120 degrees = -60 degrees.
However, angles cannot be negative, so we need to adjust the value of angle A.
Since angle A is an interior angle of triangle ABC, it must be positive. Therefore, we can add 180 degrees to the negative value of angle A to obtain the positive value:
angle A = -60 degrees + 180 degrees = 120 degrees.
Step 4: Find the value of angle SEV.
To find angle SEV, we need to consider triangle AED. Since AB = AE, we can conclude that triangle AED is an isosceles triangle. Therefore, angle AED = angle ADE.
Since the sum of the angles in a triangle is 180 degrees, we can write the following equation:
angle AED + angle ADE + angle EDA = 180 degrees
Substituting the equal angles, we get:
angle AED + angle AED + angle EDA = 180 degrees
Simplifying the equation, we find:
2 * angle AED + angle EDA = 180 degrees
Since angle AED and angle EDA are equal, we can rewrite the equation as:
2 * angle AED + angle AED = 180 degrees
Simplifying further, we find:
3 * angle AED = 180 degrees
Dividing both sides of the equation by 3, we get:
angle AED = 180 degrees / 3 = 60 degrees.
Therefore, angle SEV = angle AED = 60 degrees.
Answer:
The angle SEV in triangle ABC is 60 degrees.

Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili