
CAB~EDB CB=48, ED=5, AC=20 Найти EB=


Ответы на вопрос

Ответ:
12
Объяснение:
См.на фото.




To find the length of EB, we can use the given information and apply the triangle inequality theorem.
According to the triangle inequality theorem, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
In triangle EDB, we have: ED + EB > DB (1)
In triangle CAB, we have: AC + CB > AB (2)
From the given information, we know that CB = 48, ED = 5, and AC = 20.
Substituting these values into equation (2): 20 + 48 > AB
Simplifying the equation: 68 > AB
Now, let's look at equation (1) and substitute the known values: 5 + EB > DB
Since we don't have the exact lengths for DB or AB, we cannot determine the exact length of EB. We can only determine a range for EB.
From equation (2), we know that AB is less than 68.
From equation (1), we know that DB is greater than 5.
Therefore, we can conclude that EB is greater than 5 and less than 68, but we cannot determine its exact length without more information.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili