Вопрос задан 12.03.2021 в 00:19. Предмет Геометрия. Спрашивает Ковалёва Арина.

Помогите срочно даю 30 балов!!! В правильный треугольник площадью 36√3 дм² вписан круг. Найти

площадь правильного шестиугольника,вписанного в этот круг.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецова Оля.

Более компактное решение.

для этого воспользуемся парой формул

S правильного треугольника= 3√3*r²

где r- радиус вписаной окружности

Из формулы найдем радиус

3√3*r²=36√3

r²=12

Теперь Зная, что сторона Вписанного в окружность Правильного шестиугольника равна радиусу данной окружности, вспомним еще одну формулу

S правильного шестиугольника = (3√3*a²)/2 , где a²=r²

Найдем площадь шестиугольника

S=(3√3*12)/2=3*6*√3=18√3


0 0
Отвечает Трунова Эля.

Построим высоту правильного треугольника BH, в который вписана окружность

AH = AC/2 (высота в правильном треугольнике является его медианой, т. е. делит сторону на две равные части)

Рассмотрим ΔABH - прямоугольный

AH = AC/2 = AB/2 (в правильном треугольнике все стороны равны)

По теореме Пифагора выразим катет BH

\displaystyle\tt BH=\sqrt{AB^2-\Big(\frac{AB}{2}\Big)^2} =\sqrt{AB^2-\frac{AB^2}{4}}=\\\\\\=\sqrt{\frac{4AB^2-AB^2}{4}}=\sqrt{\frac{3AB^2}{4}} =\frac{AB\sqrt{3}}{2}

Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне

\displaystyle\tt S=\frac{1}{2} \cdot AB\cdot\frac{AB\sqrt{3}}{2}\\\\\\36\sqrt{3} =\frac{AB^2\sqrt{3}}{4}\\\\AB^2\sqrt{3}=36\sqrt{3}\cdot4\\\\AB^2\sqrt{3}=144\sqrt{3}\\\\\\AB^2=\frac{144\sqrt{3}}{\sqrt{3}}=144\\\\AB=\sqrt{144}=12~dm

Найдем радиус описанной окружности около правильного треугольника, чтобы далее найти радиус вписанной. Для этого используем формулу:

a₃ = R√3, где a₃ - сторона правильного треугольника, R - радиус описанной окружности

Подставляем

12 = R√3

\displaystyle\tt R=\frac{12}{\sqrt{3}}=\frac{12\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}} =\frac{12\sqrt{3} }{3} =4\sqrt{3} ~dm

Найдем радиус вписанной окружности, используя формулу

\displaystyle\tt r=Rcos\frac{180^\circ}{n}

где r - радиус вписанной окружности в правильный n-угольник, R - радиус описанной окружности около правильного n-угольника, n - число углов правильного треугольника (у нас правильный треугольник)

Подставляем

\displaystyle\tt r=4\sqrt{3}\cdot cos\frac{180^\circ}{3} =4\sqrt{3} \cdot\frac{1}{2} =2\sqrt{3} ~dm

Радиус окружности, вписанной в правильный треугольник, является радиусом описанной окружности около правильного шестиугольника (R₂)

Формула для стороны правильного шестиугольника через радиус описанной около него окружности:

a₆ = R, где a₆ - сторона правильного шестиугольника, R - радиус описанной около него окружности

Подставив, получаем

a₆ = 2√3 дм

Найдем периметр правильного шестиугольника:

P = 2√3 * 6 = 12√3 дм

Найдем радиус вписанной окружности в правильный шестиугольник по той же формуле через радиус описанной окружности

\displaystyle\tt r=Rcos\frac{180^\circ}{n}\\\\\\r=2\sqrt{3}\cdot cos\frac{180^\circ}{6}=2\sqrt{3} \cdot\frac{\sqrt{3}}{2} =\frac{6}{2} =3~dm

Существует формула для нахождения площади правильного n-угольника:

\displaystyle\tt S=\frac{1}{2}Pr

где S - его площадь, P - его периметр, r - радиус вписанной в него окружности

Подставляем

\displaystyle\tt S=\frac{12\sqrt{3}\cdot3}{2}=\frac{36\sqrt{3}}{2}=18\sqrt{3}~dm^2

Ответ: S = 18√3 дм²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти площадь правильного шестиугольника, вписанного в данный круг, нам понадобится знать радиус круга.

В правильном треугольнике, вписанном в круг, центр круга совпадает с центром треугольника. Таким образом, радиус круга равен расстоянию от центра треугольника до одной из его вершин.

Площадь треугольника можно выразить через его сторону a следующим образом: S = (√3/4) * a^2. Так как площадь треугольника равна 36√3 дм², мы можем найти длину его стороны:

36√3 = (√3/4) * a^2 a^2 = (36√3 * 4) / √3 a^2 = 144 a = √144 a = 12

Таким образом, сторона треугольника равна 12 дм.

Радиус круга равен расстоянию от центра треугольника до одной из его вершин, что равно одной из сторон треугольника, поделенной на √3: r = a / √3 = 12 / √3.

Площадь правильного шестиугольника, вписанного в данный круг, можно найти с помощью формулы: S = (3√3/2) * r^2.

Подставляя значение радиуса, получим:

S = (3√3/2) * (12 / √3)^2 S = (3√3/2) * (12^2 / (√3)^2) S = (3√3/2) * (12^2 / 3) S = (3√3/2) * 144/3 S = (3√3/2) * 48 S = 72√3 дм²

Таким образом, площадь правильного шестиугольника, вписанного в данный круг, равна 72√3 дм².

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос