 
Вопрос задан 09.09.2020 в 07:52.
Предмет Алгебра.
Спрашивает Парапетов Карл.
16/(x(4-X^2))=0 решите уравнение, пожалуйста!
 0
        0
         0
        0
    Ответы на вопрос
 
            Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
                
    Давайте решим уравнение \( \frac{16}{x(4-x^2)} = 0 \). Чтобы найти значения \( x \), при которых уравнение равно нулю, мы должны рассмотреть числитель и знаменатель отдельно.
Уравнение имеет нулевой знаменатель, когда \( x(4-x^2) = 0 \). Таким образом, у нас есть два случая:
1. \( x = 0 \) 2. \( 4 - x^2 = 0 \)
Во втором случае решаем квадратное уравнение:
\[ x^2 = 4 \]
Извлекаем корень:
\[ x = \pm 2 \]
Таким образом, у нас есть три корня уравнения: \( x = 0, x = 2, x = -2 \). Эти значения делают знаменатель равным нулю, что приводит к нулевому значению всего выражения.
Таким образом, корни уравнения \( \frac{16}{x(4-x^2)} = 0 \) это \( x = 0, x = 2, x = -2 \).
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			