
X^2-7x/x+2=18/x+2 решите уравнения даю 40 балов


Ответы на вопрос

Давайте решим уравнение:
\(\frac{x^2 - 7x}{x + 2} = \frac{18}{x + 2}\).
Для начала упростим обе стороны уравнения, умножив обе стороны на \(x + 2\), чтобы избавиться от дробей:
\(x^2 - 7x = 18\).
Теперь приведем уравнение к квадратному виду:
\(x^2 - 7x - 18 = 0\).
Факторизуем:
\((x - 9)(x + 2) = 0\).
Таким образом, получаем два возможных значения \(x\): \(x = 9\) или \(x = -2\).
Проверим корни, подставив их в исходное уравнение:
1. При \(x = 9\):
\(\frac{9^2 - 7 \cdot 9}{9 + 2} = \frac{81 - 63}{11} = \frac{18}{11}\).
\(\frac{18}{9 + 2} = \frac{18}{11}\).
2. При \(x = -2\):
\(\frac{(-2)^2 - 7 \cdot (-2)}{-2 + 2} = \frac{4 + 14}{0}\), что является неопределенным выражением.
Таким образом, уравнение имеет одно допустимое решение: \(x = 9\). Ответ: \(x = 9\).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili