Вопрос задан 10.06.2018 в 14:57. Предмет Алгебра. Спрашивает Игумнова Анастасия.

Медианы треугольника пересекаются в точке . Найдите длину медианы, про- ведённой к стороне , если

угол равен 47°, угол равен 133°,
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Симанкова Таня.

1. Треугольник "достраивается" до параллелограмма. Для этого медиана АК (К - середина ВС) продолжается на свою длину за точку К и полученная точка А1 соединяется с В и С. 

2. на АА1 отмечается точка М1 так, что М1К = МК. Ясно, что М1ВМС - тоже параллелограмм (я даже не стану уточнять, что М1 - точка пересечения медиан треугольника А1ВС, симметричного треугольнику АВС относительно точки К).

Поэтому угол ВМ1С = угол ВМС.

В четырехугольнике М1ВАС сумма противоположных углов ВМ1С и ВАС равна 180 градусов, поэтому вокруг него можно описать окружность.

М1А и ВС - две хорды этой окружности, пересекающиеся в точке К. Поэтому

АК*М1К = ВК*КС; 

Если обозначить длину медианы АК как m, то М1К = m/3, и

m^2/3 = (8/2)^2; m^2 = 48; m = 4*√3

 

Задача, конечно, очень простая, и "задним числом" понятно, что на это решение и рссчитывали (может быть, там можно как то доказать подобие треугольников АВК и СМК, но мне уже не охота этим заниматься, тем более, что это совершенно эквивалентный метод), но сам способ оказался симпатичным.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос