
Вопрос задан 27.05.2020 в 19:40.
Предмет Алгебра.
Спрашивает Яковлев Дима.
В треугольнике ABC с тупым углом ACB проведены высоты AA1 и BB1 .Докажите, что углы AB1A1 и ABA1
равны.

Ответы на вопрос

Отвечает Sattorova Raisa.
Треугольники АСА1 и ВСВ1 подобны: ∟АСА1=∟ВСВ1 (вертикальные), ∟САА1=90-∟ACA1=90-∟BCB1=∟CBB1
Составим отношения сторон: AA1/BB1=AC/BA=A1C/B1C
Преобразуем CB/CB1=AC/A1C
Рассмотрим треугольники ABC и A1B1C: они подобны по первому признаку подобия.
∟ACB=∟A1CB1 (вертикальные), стороны пропорциональны CB/CB1=AC/A1C
Значит ∟AB1A1=∟ABC и ∟BA1B1=∟BAC.
Что и требовалось доказать.
Составим отношения сторон: AA1/BB1=AC/BA=A1C/B1C
Преобразуем CB/CB1=AC/A1C
Рассмотрим треугольники ABC и A1B1C: они подобны по первому признаку подобия.
∟ACB=∟A1CB1 (вертикальные), стороны пропорциональны CB/CB1=AC/A1C
Значит ∟AB1A1=∟ABC и ∟BA1B1=∟BAC.
Что и требовалось доказать.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili