Вопрос задан 31.03.2020 в 02:53. Предмет Алгебра. Спрашивает Хромочкин Кирил.

Докажите иррациональность числа: √√3+√2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Омар Сейлхан.
Требуется доказать, что  является иррациональным числом.
Предположим, что существует рациональное число, представимое несократимой дробью , квадрат которого равен . Тогда имеем: . Отсюда следует, что  (a значит, и ) - нечётное число, т.e. . Подставив  в равенство , получим: . Отсюда следует, что число  - нечётное, т.e. . Тогда имеем: . Получается, что нечётное число равно чётному. Пришли к противоречию, следовательно,  является иррациональным числом.
Правильны ли мои рассуждения? Есть ли иные способы доказательства? Подскажите, пожалуйста.
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос