Вопрос задан 26.02.2020 в 21:10.
Предмет Алгебра.
Спрашивает Сүйеумағанбет Жанат.
Помогите решить уравнение срочно!!!!!! 3^(2x-3) - 9^(x-1) +27^(2x\2) = 675
Ответы на вопрос
Отвечает Коломоец Дарья.
решить: 3^(2x-3)-9^(x-1)+3^2x=675
разложи отдельно каждое число, чтобы выделилась одинаковая степень и использовались одинаковые числа:3^2x*3^(-3)-3^(2x-2)+3^2x=6753^2x*3^(-3)-3^2x*3^(-2)+3^2x=675вынесем теперь за скопку общий множитель 3^2x:3^2x(3^(-3)-3^(-2)+1)=675;3^2x(1/27-1/9+1)=675;3^2x*(25/27)=675;3^2x=675:25/27;3^2x=675*27/253^2x=27*27или лучше 27^23^2x=(3^3)^23^2x=3^6ну и осталось найти x2x=6x=3!Заменяй 9^x = a. a>0
а27 - а9 + а = 675
а - 3а + 27а = 675·27
25а = 675·27
а = 27·27 = 3^6 = 9^3
9^x = 9^3
x = 3
Второе.
log(7)2 = m
log(49)28 = (12)·log(7)28 = 0,5·(log(7)7 + log(7)4) = 0,5 + log(7)2 = 0,5 + m
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
