
Вопрос задан 09.02.2020 в 02:16.
Предмет Алгебра.
Спрашивает Куангали Нурболат.
Найдите наименьшее значение функции y=6x-In (x+6)^6 на отрезке [-5,5;0]


Ответы на вопрос

Отвечает Luts Henri.
У=6х-ln(x+6)^6 = 6(x-ln(x+6))
Берем производную y(штрих) = 6(1-1/(х+6)) = 6((х+6-1)/(х+6)), приравниваем к нулю, 6((х+6-1)/(х+6))=0, это буде если х+6-1=0, тогда х=-5, критическая точка одна и она принадлежит нашему отрезку. Теперь ищем значение функции в точках отрезка и в нашей точке -5.
у(-5) = -30
у(5) = 15.6
у(0) = -10,8
Видно, что наименьшее число -30 в точке -5, тогда ответ -30
Берем производную y(штрих) = 6(1-1/(х+6)) = 6((х+6-1)/(х+6)), приравниваем к нулю, 6((х+6-1)/(х+6))=0, это буде если х+6-1=0, тогда х=-5, критическая точка одна и она принадлежит нашему отрезку. Теперь ищем значение функции в точках отрезка и в нашей точке -5.
у(-5) = -30
у(5) = 15.6
у(0) = -10,8
Видно, что наименьшее число -30 в точке -5, тогда ответ -30


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili