Вопрос задан 16.01.2020 в 04:45. Предмет Алгебра. Спрашивает Савченко Лиза.

Решите уравнениех(х-5)(х-5)=35

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Егорова Светлана.
X^2 -10x + 25=35
x^2 - 10x -10 =0
D=100+40=140
x1= 10 + √140  / 2  = 2(10 + √35)/2= 10 + √35
x2 = 10 - √35
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим уравнение (x - 5)(x - 5) = 35 шаг за шагом:

1. Раскроем скобки, используя правило распределения: (x - 5)(x - 5) = 35 x^2 - 5x - 5x + 25 = 35

2. Объединим подобные слагаемые: x^2 - 10x + 25 = 35

3. Перенесём 35 на другую сторону уравнения: x^2 - 10x + 25 - 35 = 0 x^2 - 10x - 10 = 0

4. Теперь нам нужно решить это квадратное уравнение. Мы можем использовать квадратное уравнение вида ax^2 + bx + c = 0, где a = 1, b = -10 и c = -10.

5. Мы можем использовать формулу дискриминанта, чтобы найти корни уравнения. Дискриминант вычисляется по формуле D = b^2 - 4ac.

6. Подставим значения a, b и c в формулу дискриминанта: D = (-10)^2 - 4 * 1 * -10 = 100 + 40 = 140

7. Теперь рассмотрим три случая в зависимости от значения дискриминанта: a) Если D > 0, то уравнение имеет два различных вещественных корня. b) Если D = 0, то уравнение имеет один вещественный корень. c) Если D < 0, то уравнение не имеет вещественных корней.

8. Вычислим корни уравнения, используя формулу корней квадратного уравнения: x = (-b ± √D) / (2a)

a) Если D > 0: x = (-(-10) ± √140) / (2 * 1) x = (10 ± √140) / 2

b) Если D = 0: x = (-(-10) ± √0) / (2 * 1) x = (10 ± 0) / 2 x = 10 / 2 x = 5

c) Если D < 0: Уравнение не имеет вещественных корней.

Таким образом, уравнение (x - 5)(x - 5) = 35 имеет два корня: x = (10 ± √140) / 2, и один корень x = 5.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос