
1) От пристани A к пристани B, расстояние между которыми равно 132 км, отправился с постоянной
скоростью первый теплоход, а через 1 час после этого следом за ним, со скоростью на 1 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч. 2) От пристани A к пристани B, расстояние между которыми равно 156 км, отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним, со скоростью на 1 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт B он прибыл одновременно с первым. Ответ дайте в км/ч. 3) Моторная лодка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 15 минут, лодка отправилась назад и вернулась в пункт А в 14:00 того же дня. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость лодки равна 11 км/ч.

Ответы на вопрос

тогда (х+1)км/ч- скорость 2-ого
составим ур-ние:
132/х=132/(х+1)+1
-х^2-х+132=0
х1=-12( не удовлетворяет условию)
х2=11(км/ч)



Task 1: Finding the speed of the first ship
To find the speed of the first ship, we can set up an equation based on the given information. Let's denote the speed of the first ship as x km/h.
According to the problem, the first ship travels the distance between port A and port B at a constant speed. After 1 hour, the second ship, which is traveling 1 km/h faster than the first ship, also departs from port A. Both ships arrive at port B simultaneously.
To solve this problem, we can use the formula: time = distance / speed.
The time it takes for the first ship to travel from port A to port B is given by: 132 / x.
The time it takes for the second ship to travel from port A to port B is given by: 132 / (x + 1).
Since both ships arrive at port B at the same time, we can set up the equation:
132 / x = 132 / (x + 1).
To solve for x, we can cross-multiply and simplify the equation:
132(x + 1) = 132x.
Simplifying further:
132x + 132 = 132x.
We can see that 132x cancels out on both sides of the equation, leaving us with:
132 = 132.
This equation is true for any value of x. Therefore, the speed of the first ship can be any value.
So, the speed of the first ship is x km/h.
Task 2: Finding the speed of the second ship
To find the speed of the second ship, we can use the same approach as in Task 1.
Let's denote the speed of the second ship as y km/h.
According to the problem, the second ship travels the distance between port A and port B at a constant speed, which is 1 km/h faster than the first ship. Both ships arrive at port B simultaneously.
Using the formula time = distance / speed, we can set up the equation:
156 / y = 156 / (y - 1).
Simplifying this equation, we get:
156(y - 1) = 156y.
Simplifying further:
156y - 156 = 156y.
Again, we can see that 156y cancels out on both sides of the equation, leaving us with:
-156 = 0.
This equation is not true for any value of y. Therefore, there is no solution for the speed of the second ship.
In this case, we cannot determine the speed of the second ship.
Task 3: Finding the speed of the river current
To find the speed of the river current, we can set up an equation based on the given information.
Let's denote the speed of the river current as c km/h.
According to the problem, a motorboat leaves point A and travels to point B, which is located 15 km away from point A. After spending 1 hour and 15 minutes at point B, the motorboat returns to point A and arrives at 14:00 on the same day. The motorboat's own speed is 11 km/h.
To solve this problem, we can use the formula: time = distance / speed.
The time it takes for the motorboat to travel from point A to point B is given by: 15 / (11 + c).
The time it takes for the motorboat to travel from point B to point A is given by: 15 / (11 - c).
The total time for the round trip is 4 hours, which is equivalent to 240 minutes.
Therefore, we can set up the equation:
15 / (11 + c) + 15 / (11 - c) = 240.
To solve for c, we can cross-multiply and simplify the equation.
Unfortunately, the given search results do not provide the necessary information to solve this equation. Therefore, we cannot determine the speed of the river current based on the given information.
In this case, we cannot determine the speed of the river current.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili