Вопрос задан 19.06.2019 в 20:15. Предмет Алгебра. Спрашивает Агафонов Никита.

Вычислить острый угол, под которым парабола y=x^- 9 пересекает ось абсцисс.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Волков Влад.

Найдём тангенс угла наклона касательной в точках пересечения графика функции

f(x) = х² - 9.

Для этого найдём сначала точки пересечения

В точках на оси х значения у = 0

0 = х² - 9

х₁ = -3

х₂ = 3

Видим, что точек две!

В точке х = -3 угол, который составляет касательная с осью х будет тупой, поэтому для этой точки угол наклона вычислять не надо.

Для определения тангенса угла наклона касательной в точке  х = 3 найдём производную функции

f'(x) = 2x

запишем уравнение касательной в точке х = 3

f(3) = 0

f'(3) = 6

уравнение касательной:

у = 6(х - 3)

у = 6х - 18

tg α = 6,

Ответ: α = arctg 6

 

 

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос