Вопрос задан 20.05.2019 в 09:11. Предмет Алгебра. Спрашивает Лукьянцев Влад.

Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого

года действия кредита долг заёмщика возрастает на 20 % по сравнению с началом года. В конце 1-го, 2-го и 3-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 4-го и 5-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 10 млн.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ходжоян Люсия.
Пусть S- сумма кредита, k- к/т банка и он равен 1,2 (20%)
х сумма платежей в 4 и 5 года

составим таблицу выплат
             сумма долга               выплаты              остаток
1 год        1,2S                            0.2S                       S
2 год        1.2S                            0.2S                       S
3 год        1.2S                            0.2S                       S
4 год        1,2S                              x                      1.2S-x
5 год      1,2(1,2S-x)                      x                    1.44S-1.2x-x

остаток на конец 5 года равен нулю
выразим x 

1.44S-1.2x-x=0
1.44S=2.2x
x= 1.44S/2.2= 0.72S/1.1=72S/110=36S/55

теперь посчитаем выплаты
0,2S+0.2S+0.2S+x+x>10
0.6S+2x>10
0.6S+2(36S/55)>10
0.6*55*S+72S>550
33S+72S>550
105S>550
S>5.23

т.к. кредит круглое число то S=6 млн
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос