
Решить через теорему Виета 3х^2+5х-1=0


Ответы на вопрос

3x^2 + 5x - 1 = 9x + 5x - 1 = 14x - 1 = 0
14x = 1



Solving the Quadratic Equation using Vieta's Theorem
To solve the quadratic equation 3x^2 + 5x - 1 = 0 using Vieta's theorem, we can use the following approach:
1. Identify the coefficients of the quadratic equation: - The coefficient of x^2 is 3. - The coefficient of x is 5. - The constant term is -1.
2. Apply Vieta's theorem: - Vieta's theorem states that for a quadratic equation ax^2 + bx + c = 0, the sum of the roots is equal to -b/a and the product of the roots is equal to c/a.
3. Find the sum of the roots: - In this case, the sum of the roots is equal to -b/a. - Plugging in the values from the equation, we have -5/3.
4. Find the product of the roots: - In this case, the product of the roots is equal to c/a. - Plugging in the values from the equation, we have -1/3.
5. Solve for the roots: - Let's assume the roots of the equation are r1 and r2. - We know that r1 + r2 = -5/3 and r1 * r2 = -1/3. - Using these equations, we can solve for the roots.
Let's calculate the roots using Vieta's theorem:
Sum of the roots (r1 + r2) = -5/3. Product of the roots (r1 * r2) = -1/3.
Using these equations, we can solve for the roots.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili