
Решите систему неравенств {(-2x≤-4 ; 3x<21) и найдите среднее арифметическое ее целых решений.
А) 2; Б) 9; В) 2,5; Г) 4.

Ответы на вопрос

x≥ 2 x < 7
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
------ 2 ------------- 7 -------------
\\\\\\\\\\\\\\\\\\\\\\\\\\\
x∈[2; 7)
x={2; 3; 4; 5; 6} - целые решения
2+3+4+5+6 = 20/5 = 4
5
Ответ: Г)4



Для начала решим каждое неравенство по отдельности:
1) -2x ≤ -4 Домножим обе части неравенства на -1, чтобы изменить знак: 2x ≥ 4 Разделим обе части неравенства на 2: x ≥ 2
2) 3x < 21 Разделим обе части неравенства на 3: x < 7
Теперь найдем пересечение множеств решений этих неравенств. Так как одно неравенство имеет знак "больше или равно", а другое - "меньше", то нужно найти пересечение интервалов [2, +∞) и (-∞, 7).
Изобразим эти интервалы на числовой прямой:
-∞ 2 7 +∞ [-----)-----]
То есть, решениями системы неравенств будут все числа, которые больше или равны 2, но меньше 7.
Целые числа, удовлетворяющие этому условию, - это 2, 3, 4, 5 и 6.
Среднее арифметическое этих чисел равно (2 + 3 + 4 + 5 + 6) / 5 = 4.
Таким образом, правильный ответ - Г) 4.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili