
1.(sina / 1-cosa) + (sina/1+cosa); 2. sin2a /1+cosa; 3. ctg b(1-cosb); 4. 1+cos2a / 2 cosa; 5. 1-
cos2a / 2sina ; 6. tga ( 1+cos2a)

Ответы на вопрос

1.(sin²a+1+2cosa+cos²a)/(sina)(1+cosa)=(2+2cosa)/sina(1+cosa)=2(1+cosa)/sina(1+cosa)=2/sina
ИЛИ
sina/(1+cosa)+(1+cosa)/sina-2/sina=0; sina/(1+cosa)+(cosa-1)/sina=0; ((sina)^2+(cosa)^2-1)/(sina(1+cosa))=0;(1-1)/(sina(1+cosa))=0



1. (sin(a) + 1)/(cosa): To simplify this expression, we can start by factoring out a common term, which is 1. We have:
``` (sin(a) + 1)/(cosa) = 1*(sin(a) + 1)/(cosa) ```
Next, we can simplify the expression by dividing each term separately:
``` 1*(sin(a) + 1)/(cosa) = sin(a)/(cosa) + 1/(cosa) ```
Using the identity sin(a)/cosa = tan(a), we can rewrite the expression as:
``` tan(a) + sec(a) ```
2. sin^2(a)/(1+cosa): To simplify this expression, we can start by using the identity sin^2(a) = 1 - cos^2(a):
``` sin^2(a)/(1+cosa) = (1 - cos^2(a))/(1+cosa) ```
Next, we can factor out a common term, which is 1:
``` (1 - cos^2(a))/(1+cosa) = 1*(1 - cos^2(a))/(1+cosa) ```
Now, we can simplify the expression by dividing each term separately:
``` 1*(1 - cos^2(a))/(1+cosa) = (1 - cos^2(a))/(1+cosa) ```
Using the identity 1 - cos^2(a) = sin^2(a), we can rewrite the expression as:
``` sin^2(a)/(1+cosa) ```
3. ctg(b(1-cosb)): The expression ctg(b(1-cosb)) represents the cotangent of the angle b times (1 - cos(b)).
4. (1 + cos^2(a))/(2cosa): To simplify this expression, we can start by factoring out a common term, which is cos^2(a). We have:
``` (1 + cos^2(a))/(2cosa) = cos^2(a) * (1 + 1/cos^2(a))/(2cosa) ```
Next, we can simplify the expression by dividing each term separately:
``` cos^2(a) * (1 + 1/cos^2(a))/(2cosa) = (cos^2(a) + 1/cos^2(a))/(2cosa) ```
Using the identity cos^2(a) + 1/cos^2(a) = sec^2(a), we can rewrite the expression as:
``` sec^2(a)/(2cosa) ```
5. (1 - cos^2(a))/(2sin(a)): To simplify this expression, we can start by factoring out a common term, which is 1 - cos^2(a). We have:
``` (1 - cos^2(a))/(2sin(a)) = (1 - cos^2(a))/(2sin(a)) ```
Using the identity 1 - cos^2(a) = sin^2(a), we can rewrite the expression as:
``` sin^2(a)/(2sin(a)) ```
Simplifying further, we have:
``` sin(a)/2 ```
6. tga(1 + cos^2(a)): The expression tga(1 + cos^2(a)) represents the tangent of the angle a times (1 + cos^2(a)).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili