Вопрос задан 03.05.2019 в 11:34. Предмет Алгебра. Спрашивает Каузов Ярослав.

Найти сумму действительных корней уравнения:x^4-2x^2-12x-8=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Логвиненко Коля.

Используем метод неопределённых коэффициентов.Предположим, что левая часть уравнения разлагается на множители второй степени с целыми коэффициентами. Обозначим один из них черезx^2+px+q , другой - через x^2+rx+s.

Задача сводится к нахождению p, q, r, s. Тогда

x^4-2x^2-12x-8=(x^2+px+q)(x^2+rx+s)=0

\begin{cases} p+r=0\\q+s+pr=-2\\ps+qr=-12\\qs=-8 \end{cases}

Можно попробовать взять q=4, s=-2, тогда p=2, r=-2, а уравнение может быть представлено в виде:

 x^4-2x^2-12x-8=(x^2+2x+4)(x^2-2x-2)=0

x^2+2x+4=0  не имеет действительных корней, так как дискриминант меньше 0 (2^2-4*4=-12).

x^2-2x-2=0

x_1=(2+\sqrt{12})/2=1+\sqrt{3}

x_2=(2-\sqrt{12})/2=1-\sqrt{3}

Сумма корней: x_1+x_2=1+\sqrt{3}+1-\sqrt{3}=2

если взять q=-4, s=2, тогда p=-2, r=2, а уравнение может быть представлено в виде:

x^4-2x^2-12x-8=(x^2-2x-4)(x^2+2x+2)=0

x^2-2x-4=0

x_1=(2+\sqrt{20})/2=1+\sqrt{5}

x_2=(2-\sqrt{20})/2=1-\sqrt{5}

x^2+2x+2=0 не имеет действительных корней, так как дискриминант меньше 0 (2^2-4*2=-4).

Сумма корней: x_1+x_2=1+\sqrt{5}+1-\sqrt{5}=2

Ответ: 2.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти сумму действительных корней уравнения x^4 - 2x^2 - 12x - 8 = 0, мы можем воспользоваться теоремой Виета для многочленов.

Уравнение данного вида имеет вид x^4 + ax^3 + bx^2 + cx + d

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос