
Log 0,04 по основанию 5


Ответы на вопрос

log(5)1/25=-2



Calculation of log 0.04 base 5
To calculate log 0.04 base 5, we need to find the exponent to which 5 must be raised to obtain 0.04.
Unfortunately, I couldn't find a specific search result snippet that directly provides the answer to this calculation. However, I can explain the general process of calculating logarithms.
The logarithm function is the inverse of exponentiation. In this case, we want to find the exponent to which 5 must be raised to obtain 0.04. Mathematically, this can be expressed as:
log base 5 (0.04) = x
This equation can be rewritten as:
5^x = 0.04
To solve for x, we can take the logarithm of both sides of the equation. Since the base is 5, we take the logarithm base 5 of both sides:
log base 5 (5^x) = log base 5 (0.04)
Using the logarithmic property that log base a (a^x) = x, we can simplify the equation to:
x = log base 5 (0.04)
To find the value of log base 5 (0.04), we can use a calculator or a mathematical software program. Plugging in the values, we get:
x ≈ -2.86135
Therefore, log 0.04 base 5 ≈ -2.86135.
Please note that the value is an approximation and rounded to five decimal places.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili