
Помогите пожалуйста! 1. Точки M, N, K лежат на одной прямой. MN = 15 см. NK = 18 см. Найти
отрезок MK. 2. Угол AOB + угол COD = 108° Найти угол BOD. 3. С помощью транспортира начертить угол равный 132° и проведите биссектрису смежного с ним угла. 4. Точки M, N и P. MP = 12 см. MN = 5 см. PN = 8 см. Может ли такое быть, что все три точки лежат на одной прямой? 5. AB перпендикулярно CD . OE - биссектриса. Найти угол COE. 6. Найдите не развёрнутые углы, образованные при пересечении двух прямых, если разность двух из низ равна 37° . Шестое задание делать не обязательно

Ответы на вопрос




1. To find the length of segment MK, we can add the lengths of segments MN and NK. Therefore, MK = MN + NK = 15 cm + 18 cm = 33 cm. The length of segment MK is 33 cm. [[1]]
2. If angle AOB is equal to angle COD and both angles add up to 108°, we can divide 108° by 2 to find the measure of angle BOD. Therefore, angle BOD = 108° / 2 = 54°. The measure of angle BOD is 54°. [[2]]
3. To draw an angle equal to 132° using a protractor and construct its bisector, follow these steps: - Draw a ray as one side of the angle. - Place the center of the protractor on the vertex of the angle. - Align the baseline of the protractor with the ray. - Locate the 132° mark on the protractor and mark a point on the ray. - Remove the protractor and draw a line segment connecting the vertex of the angle to the marked point. - Bisect the angle by using a compass to draw arcs from the two sides of the angle. The point where the arcs intersect is the bisector of the angle. Draw an angle equal to 132° and construct its bisector.
4. If points M, N, and P are collinear (lie on the same line), the sum of the lengths of any two segments should be equal to the length of the third segment. Let's check if this condition holds true for the given lengths: - MP + PN = 12 cm + 8 cm = 20 cm - MN = 5 cm Since MP + PN is not equal to MN, it means that points M, N, and P cannot be collinear. Therefore, it is not possible for all three points to lie on the same line. [[3]]
5. If AB is perpendicular to CD and OE is the bisector, we can find the measure of angle COE as follows: - Since AB is perpendicular to CD, angle AOC is a right angle (90°). - The bisector OE divides angle AOC into two equal angles. - Therefore, angle COE is half of angle AOC, which is 90° / 2 = 45°. The measure of angle COE is 45°. [[4]]
6. The problem states that the difference between two non-reflex angles formed by the intersection of two lines is 37°. Since the problem does not provide any specific angles or measurements, we cannot determine the exact values of the angles. However, we can say that the difference between the two angles is 37°. The difference between the two non-reflex angles formed by the intersection of two lines is 37°.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili