
При каких значениях параметра а уравнение 4х^2 + 3ах + 1 = 0 имеет два различных корня?


Ответы на вопрос




Finding the Values of Parameter "a" for the Equation to Have Two Distinct Roots
To find the values of the parameter "a" for the equation \(4x^2 + 3ax + 1 = 0\) to have two distinct roots, we can use the discriminant of the quadratic equation.
The discriminant, denoted as \(D\), is given by the formula: \[D = b^2 - 4ac\] where \(a\), \(b\), and \(c\) are the coefficients of the quadratic equation \(ax^2 + bx + c = 0\).
For the equation \(4x^2 + 3ax + 1 = 0\), the discriminant is: \[D = (3a)^2 - 4*4*1\]
To have two distinct roots, the discriminant \(D\) must be greater than 0.
Calculating the Discriminant for Two Distinct Roots
To find the values of "a" for which the equation has two distinct roots, we set the discriminant \(D\) greater than 0 and solve for "a": \[D > 0\] \[(3a)^2 - 16 > 0\]
Solving the inequality: \[(3a)^2 > 16\] \[9a^2 > 16\] \[a^2 > \frac{16}{9}\] \[a > \pm \frac{4}{3}\]
Therefore, the equation \(4x^2 + 3ax + 1 = 0\) has two distinct roots when the parameter "a" is greater than or less than \(\pm \frac{4}{3}\).
In summary, the equation \(4x^2 + 3ax + 1 = 0\) has two distinct roots when the parameter "a" is greater than or less than \(\pm \frac{4}{3}\).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili