
Вопрос задан 07.05.2018 в 03:15.
Предмет Алгебра.
Спрашивает Кванталиани Анна.
как решить такое уравнение ? sin^2(2pi-x)+5sin(pi-x)cosx+4sin^2(3pi/2-x)=0


Ответы на вопрос

Отвечает Филипповский Данил.
sin^2(2pi-x)+5sin(pi-x)cosx+4sin^2(3pi/2-x)=0
применим формулы приведения
sin^2(2pi-x)=sin^2(x)
sin(pi-x)=sinx
sin^2(3pi/2-x)=cos^2(x)
уравнение принимает вид:
sin^2(x)+5sinxcosx+4cos^2(x)=0
Это однородное уравнение 2-ой степени. Поделим обе части уравнения на cos^2(x), получим
tg^2(x)+5tgx+4=0, пусть tgx=а,
а^2+5a+4=0, D=9, a₁=-4, a₂=-1
tgx=-4 или tgx=-1
x=-arctg4+πn, n∈Z или x=-π/4+πm, m∈Z


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili