
Вопрос задан 27.03.2019 в 23:24.
Предмет Алгебра.
Спрашивает Рудик Саша.
Сколько корней имеет уравнение cos2x-cosx/sinx=0 на промежутке [-2pi;2pi] ПОЖАЛУЙСТА ПОМОГИТЕ срочно


Ответы на вопрос

Отвечает Вахлов Максим.
ОДЗ sinx≠0⇒x≠πn
2cos²x-cosx-1=0
cosx=a
2a²-a-1=0
D=1+8=9
a1=(1-3)/4=-1/2⇒cosx=-1/2⇒x=+-2π/3+2πn
a2=(1+3)/4=1⇒cosx=1⇒x=2πn,не удовл ОДЗ
х=-4π/3;-2π/3;2π/3;4π/3
2cos²x-cosx-1=0
cosx=a
2a²-a-1=0
D=1+8=9
a1=(1-3)/4=-1/2⇒cosx=-1/2⇒x=+-2π/3+2πn
a2=(1+3)/4=1⇒cosx=1⇒x=2πn,не удовл ОДЗ
х=-4π/3;-2π/3;2π/3;4π/3


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili