
Вопрос задан 22.03.2019 в 06:20.
Предмет Алгебра.
Спрашивает Ширнина Алиса.
При каких значениях параметра b корни уравнения 4x^+(3b^-5[b]+2)x-3=0 равны по модулю?


Ответы на вопрос

Отвечает Калашников Расул.
Видимо, [b] - это модуль, а не целая часть.
Если это все же целая часть, то я вообще не знаю, как такое решать.
Решаем квадратное уравнение
4x^2 + (3b^2 - 5[b] + 2)x - 3 = 0
1) Если b < 0, то [b] = -b, тогда
4x^2 + (3b^2 + 5b + 2)x - 3 = 0
D = (3b^2+5b+2)^2 - 4*4*(-3) = (3b^2+5b+2)^2 + 48 > 0 при любом b, потому что это сумма квадрата и числа 48.
x1 = (-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8
x2 = (-3b^2 - 5b - 2 + √((3b^2+5b+2)^2 + 48)) / 8
И они должны быть равны по модулю, то есть либо равны, либо противоположны.
а) x1 = -x2
(-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8 =
= (3b^2 + 5b + 2 - √((3b^2+5b+2)^2 + 48)) / 8
Отсюда получаем
-3b^2 - 5b - 2 = 3b^2 + 5b + 2
(3b^2 + 5b + 2) + (3b^2 + 5b + 2) = 0
3b^2 + 5b + 2 = 0
D = 25 - 4*3*2 = 25 - 24 = 1
b1 = (-5 - 1)/6 = -1 < 0
b2 = (-5 + 1)/6 = -2/3 < 0
Оба значения подходят.
б) x1 = x2
(-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8 =
= (-3b^2 - 5b - 2 + √((3b^2+5b+2)^2 + 48)) / 8
Отсюда получаем
√((3b^2+5b+2)^2 + 48) = -√((3b^2+5b+2)^2 + 48)
2√((3b^2+5b+2)^2 + 48) = 0
√((3b^2+5b+2)^2 + 48) = 0
(3b^2+5b+2)^2 + 48 = 0
Решений нет, потому что это сумма квадрата и числа 48.,
2) Если b > 0, то [b] = b
4x^2 + (3b^2 - 5b + 2)x - 3 = 0
D = (3b^2-5b+2)^2 - 4*4*(-3) = (3b^2-5b+2)^2 + 48 > 0 при любом b, потому что это сумма квадрата и числа 48.
x1 = (-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8
x2 = (-3b^2 + 5b - 2 + √((3b^2-5b+2)^2 + 48)) / 8
И они должны быть равны по модулю, то есть либо равны, либо противоположны.
а) x1 = -x2
(-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8 =
= (3b^2 - 5b + 2 - √((3b^2-5b+2)^2 + 48)) / 8
Отсюда получаем
-3b^2 + 5b - 2 = 3b^2 - 5b + 2
(3b^2 - 5b + 2) + (3b^2 - 5b + 2) = 0
3b^2 - 5b + 2 = 0
D = 25 - 4*3*2 = 25 - 24 = 1
b1 = (5 + 1)/6 = 1 > 0
b2 = (5 - 1)/6 = 2/3 > 0
Оба значения подходят.
б) x1 = x2
(-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8 =
= (-3b^2 + 5b - 2 + √((3b^2-5b+2)^2 + 48)) / 8
Отсюда получаем
√((3b^2-5b+2)^2 + 48) = -√((3b^2-5b+2)^2 + 48)
2√((3b^2-5b+2)^2 + 48) = 0
√((3b^2-5b+2)^2 + 48) = 0
(3b^2-5b+2)^2 + 48 = 0
Решений нет, потому что это сумма квадрата и числа 48.,
Ответ: b1 = -1; b2 = -2/3; b3 = 2/3; b4 = 1
Если это все же целая часть, то я вообще не знаю, как такое решать.
Решаем квадратное уравнение
4x^2 + (3b^2 - 5[b] + 2)x - 3 = 0
1) Если b < 0, то [b] = -b, тогда
4x^2 + (3b^2 + 5b + 2)x - 3 = 0
D = (3b^2+5b+2)^2 - 4*4*(-3) = (3b^2+5b+2)^2 + 48 > 0 при любом b, потому что это сумма квадрата и числа 48.
x1 = (-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8
x2 = (-3b^2 - 5b - 2 + √((3b^2+5b+2)^2 + 48)) / 8
И они должны быть равны по модулю, то есть либо равны, либо противоположны.
а) x1 = -x2
(-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8 =
= (3b^2 + 5b + 2 - √((3b^2+5b+2)^2 + 48)) / 8
Отсюда получаем
-3b^2 - 5b - 2 = 3b^2 + 5b + 2
(3b^2 + 5b + 2) + (3b^2 + 5b + 2) = 0
3b^2 + 5b + 2 = 0
D = 25 - 4*3*2 = 25 - 24 = 1
b1 = (-5 - 1)/6 = -1 < 0
b2 = (-5 + 1)/6 = -2/3 < 0
Оба значения подходят.
б) x1 = x2
(-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8 =
= (-3b^2 - 5b - 2 + √((3b^2+5b+2)^2 + 48)) / 8
Отсюда получаем
√((3b^2+5b+2)^2 + 48) = -√((3b^2+5b+2)^2 + 48)
2√((3b^2+5b+2)^2 + 48) = 0
√((3b^2+5b+2)^2 + 48) = 0
(3b^2+5b+2)^2 + 48 = 0
Решений нет, потому что это сумма квадрата и числа 48.,
2) Если b > 0, то [b] = b
4x^2 + (3b^2 - 5b + 2)x - 3 = 0
D = (3b^2-5b+2)^2 - 4*4*(-3) = (3b^2-5b+2)^2 + 48 > 0 при любом b, потому что это сумма квадрата и числа 48.
x1 = (-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8
x2 = (-3b^2 + 5b - 2 + √((3b^2-5b+2)^2 + 48)) / 8
И они должны быть равны по модулю, то есть либо равны, либо противоположны.
а) x1 = -x2
(-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8 =
= (3b^2 - 5b + 2 - √((3b^2-5b+2)^2 + 48)) / 8
Отсюда получаем
-3b^2 + 5b - 2 = 3b^2 - 5b + 2
(3b^2 - 5b + 2) + (3b^2 - 5b + 2) = 0
3b^2 - 5b + 2 = 0
D = 25 - 4*3*2 = 25 - 24 = 1
b1 = (5 + 1)/6 = 1 > 0
b2 = (5 - 1)/6 = 2/3 > 0
Оба значения подходят.
б) x1 = x2
(-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8 =
= (-3b^2 + 5b - 2 + √((3b^2-5b+2)^2 + 48)) / 8
Отсюда получаем
√((3b^2-5b+2)^2 + 48) = -√((3b^2-5b+2)^2 + 48)
2√((3b^2-5b+2)^2 + 48) = 0
√((3b^2-5b+2)^2 + 48) = 0
(3b^2-5b+2)^2 + 48 = 0
Решений нет, потому что это сумма квадрата и числа 48.,
Ответ: b1 = -1; b2 = -2/3; b3 = 2/3; b4 = 1


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili