Вопрос задан 25.02.2019 в 18:47. Предмет Алгебра. Спрашивает Сергеев Кирилл.

дана геометрическая прогрессия -2, 6,-18.... Найдите модуль разности пятого и первого членов

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бураков Кирилл.

b(1)=-2

b(2)=6

b(3)=-18

 

q=b(2)/b(1)=b(3)/b(2)=6/-2 = -18/6= -3

 

b(5)= b(3)*q^2

b(5)= -18*9=-162

 

|-162+2|=|-160|=160

0 0
Отвечает Прилепская Оля.

b1=-2     b2=6

q=b2/b1=-3

b5=b1*q^4=-2*3^4=-2*81=-162

Ib1-b5I=I-2-(-162)I=I-2+162I=160

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения модуля разности пятого и первого членов данной геометрической прогрессии, нам необходимо найти значения пятого и первого членов и вычислить их разность.

Для этого нам нужно знать формулу общего члена геометрической прогрессии. В данном случае, общий член геометрической прогрессии может быть представлен следующим образом:

aₙ = a₁ * r^(n-1),

где aₙ - n-ый член геометрической прогрессии, a₁ - первый член геометрической прогрессии, r - знаменатель прогрессии, n - номер

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос