
Log32 x -2log3 x ≤ 3.log8x + log√2x = 14.решите, пожалуйста


Ответы на вопрос

log2 x * (
Помножимо на обернений дріб
log2 x=6
x=
x=64



Problem Analysis
To solve the equation log32(x) - 2log3(x) ≤ 3log8(x) + log√2(x) = 14, we need to simplify the equation and find the value(s) of x that satisfy the inequality.Simplifying the Equation
Let's simplify the equation step by step:1. Convert the logarithms to a common base: - log32(x) can be written as log(x) / log(32) - log3(x) can be written as log(x) / log(3) - log8(x) can be written as log(x) / log(8) - log√2(x) can be written as log(x) / log(√2)
2. Substitute the above expressions into the equation: - log(x) / log(32) - 2(log(x) / log(3)) ≤ 3(log(x) / log(8)) + log(x) / log(√2) = 14
3. Simplify the equation further: - (log(x) - 2log(x)) / log(3) ≤ (3log(x) + log(x)) / log(8) + log(x) / log(√2) = 14 - -log(x) / log(3) ≤ 4log(x) / log(8) + log(x) / log(√2) = 14
4. Multiply both sides of the equation by log(3) to eliminate the denominators: - -log(x) ≤ 4log(x) * (log(3) / log(8)) + log(x) * (log(3) / log(√2)) = 14 * log(3)
5. Simplify the equation further: - -log(x) ≤ 4log(x) * log3(8) + log(x) * log3(√2) = 14 * log(3) - -log(x) ≤ 4log(x) * 3 + log(x) * (1/2) = 14 * log(3) - -log(x) ≤ 12log(x) + log(x) / 2 = 14 * log(3) - -log(x) ≤ (25/2)log(x) = 14 * log(3)
6. Multiply both sides of the equation by -2 to eliminate the negative sign: - log(x) ≥ (25/2)log(x) = -28 * log(3)
7. Subtract (25/2)log(x) from both sides of the equation: - log(x) - (25/2)log(x) ≥ -28 * log(3) - (25/2)log(x) - (2/2)log(x) - (25/2)log(x) ≥ -28 * log(3) - (25/2)log(x) - (-23/2)log(x) ≥ -28 * log(3) - (25/2)log(x)
8. Simplify the equation further: - (-23/2)log(x) ≥ -28 * log(3) - (25/2)log(x) - (-23/2)log(x) + (25/2)log(x) ≥ -28 * log(3) - (2/2)log(x) - (23/2)log(x) ≥ -28 * log(3) - (-21/2)log(x) ≥ -28 * log(3)
9. Divide both sides of the equation by (-21/2): - log(x) ≤ (-28 * log(3)) / (-21/2) - log(x) ≤ (56/21) * log(3) - log(x) ≤ (8/3) * log(3)
10. Convert the logarithm back to exponential form: - x ≤ 3^(8/3)
Solution
The solution to the equation log32(x) - 2log3(x) ≤ 3log8(x) + log√2(x) = 14 is x ≤ 3^(8/3).Please note that this is a simplified form of the equation, and the solution may need to be further verified or refined.
Let me know if you need any further assistance!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili