
Найдите все значения х, при каждом из которых касательная к графику функции у=cos7x+7cosx в точках
с абсциссой х параллельна касательной к этому же графику в точке с абсциссой пи/6

Ответы на вопрос

Производная у'=-7sin7x-7sinx...y'(п/6)=-7*(-0,5)-7*(0,5)=0-это тангенс угла наклона касательной во всех этих точках...решаем уравнение -7sin7x-7sinx=0...сокращаем на -7:sin7x+sinx=0...по формуле преобразования суммы в произведение получаем 2sin4x*cos3x=0...1).sin4x=0...4x=пк или х1=пк/4 (к принадл.Z)-1-й ответ....2).сos3x=0...3х=п/2+пк....х=п/6+пк/3 (к принадл.Z)-2-й ответ.



Finding the Values of x for Tangents Parallel to the Tangent at x = π/6
To find the values of x for which the tangent to the graph of the function y = cos(7x) + 7cos(x) is parallel to the tangent at x = π/6, we need to determine the slope of the tangent at x = π/6 and then find the values of x that have the same slope.
Let's start by finding the slope of the tangent at x = π/6. We can do this by taking the derivative of the function y = cos(7x) + 7cos(x) with respect to x.
The derivative of cos(7x) is -7sin(7x) (using the chain rule), and the derivative of 7cos(x) is -7sin(x) (using the chain rule). Therefore, the derivative of the function y = cos(7x) + 7cos(x) is:
y' = -7sin(7x) - 7sin(x)
Now, let's find the slope of the tangent at x = π/6 by substituting x = π/6 into the derivative:
y'(π/6) = -7sin(7(π/6)) - 7sin(π/6)
Simplifying this expression, we get:
y'(π/6) = -7sin(7π/6) - 7sin(π/6)
Using the trigonometric identity sin(π - θ) = sin(θ), we can simplify further:
y'(π/6) = -7sin(π/6) - 7sin(π/6)
y'(π/6) = -14sin(π/6)
y'(π/6) = -14(1/2)
y'(π/6) = -7
So, the slope of the tangent at x = π/6 is -7.
Now, we need to find the values of x for which the slope of the tangent is also -7. To do this, we can set the derivative equal to -7 and solve for x:
-7sin(7x) - 7sin(x) = -7
Dividing both sides of the equation by -7, we get:
sin(7x) + sin(x) = 1
Using the trigonometric identity sin(A) + sin(B) = 2sin((A + B)/2)cos((A - B)/2), we can rewrite the equation as:
2sin((7x + x)/2)cos((7x - x)/2) = 1
Simplifying further, we have:
2sin(4x)cos(3x) = 1
Dividing both sides of the equation by 2cos(3x), we get:
sin(4x)/cos(3x) = 1/2
Using the trigonometric identity tan(θ) = sin(θ)/cos(θ), we can rewrite the equation as:
tan(4x) = 1/2
To find the values of x that satisfy this equation, we can take the inverse tangent (arctan) of both sides:
4x = arctan(1/2)
x = (1/4)arctan(1/2)
Therefore, the values of x for which the tangent to the graph of the function y = cos(7x) + 7cos(x) is parallel to the tangent at x = π/6 are given by:
x = (1/4)arctan(1/2)
Please note that this is a general solution, and there may be additional values of x that satisfy the condition.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili