
Помогите решить с объяснением Сравните: 3^52 и 4^39


Ответы на вопрос




Для сравнения степеней с разными основаниями и разными показателями, нужно привести их к одному основанию или одному показателю. Для этого можно использовать свойства степеней, такие как:
- $(a^m)^n = a^{mn}$ - степень степени равна произведению показателей; - $a^m \cdot a^n = a^{m+n}$ - произведение степеней с одинаковым основанием равно степени с тем же основанием и суммой показателей; - $\frac{a^m}{a^n} = a^{m-n}$ - частное степеней с одинаковым основанием равно степени с тем же основанием и разностью показателей.
Преобразуем числа $3^{52}$ и $4^{39}$ к одному основанию:
- $3^{52} = (3^4)^{13} = (81)^{13}$; - $4^{39} = (4^3)^{13} = (64)^{13}$.
Теперь можно сравнить числа $81^{13}$ и $64^{13}$, заметив, что $81 > 64$. Так как основание степени больше единицы, то большему основанию соответствует большая степень при одинаковом показателе. Следовательно, $81^{13} > 64^{13}$.
Ответ: $3^{52} > 4^{39}$.Сравнение степеней с разными основаниями


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili