
Вопрос задан 30.04.2018 в 00:10.
Предмет Алгебра.
Спрашивает Храмкова Арина.
В равнобедренном треугольнике ABC проведена высота BD к основанию AC. Длина высоты — 11,9 см, длина
боковой стороны — 23,8 см. Определи углы этого треугольника. ∡BAC=.... ° ∡BCA=.... ° ∡ABC=.... °

Ответы на вопрос

Отвечает Жарнова Диана.
Высота разбивает равнобедренный треугольник на 2 прямоугольных равных между собой.
В прямоугольном ΔABD катет ВD = 11,9 см, а гипотенуза АВ = 23,8 см.
Если 23,8 см : 11,9 см = 2
Получается, что катет равен половине гипотенузы, а это возможно если этот катет лежит против угла в 30°.
∡ВАС = ∡ВСА = 30°.
Сумма всех углов треугольника всегда равна 180°.
Отсюда:
∡АВС = 180° - (30° + 30°) = 120°.
Ответ: ∡ ВАС = 30°;
∡ ВСА = 30°;
∡АВС = 120°.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili