
Сократите дробь (9x^2-6x+1)/(6x^2+x-1) И найти её значение при x= -1(1/6)


Ответы на вопрос




Для сокращения дроби (9x^2 - 6x + 1)/(6x^2 + x - 1) мы можем привести ее к наименьшему знаменателю и затем сократить общие множители числителя и знаменателя.
Сначала факторизуем числитель и знаменатель: 9x^2 - 6x + 1 = (3x - 1)(3x - 1) 6x^2 + x - 1 = (2x - 1)(3x + 1)
Затем мы можем сократить общие множители: (9x^2 - 6x + 1)/(6x^2 + x - 1) = ((3x - 1)(3x - 1))/((2x - 1)(3x + 1))
Теперь, чтобы найти значение этой дроби при x = -1(1/6), мы подставляем это значение вместо x в выражение: ((3(-1(1/6)) - 1)(3(-1(1/6)) - 1))/((2(-1(1/6)) - 1)(3(-1(1/6)) + 1))
Давайте выполним вычисления:
((3(-1(1/6)) - 1)(3(-1(1/6)) - 1))/((2(-1(1/6)) - 1)(3(-1(1/6)) + 1)) = ((-4/6 - 1)(-4/6 - 1))/((-3/6 - 1)(-4/6 + 1)) = ((-10/6)(-10/6))/((-9/6)(-2/6)) = (100/36)/(18/36) = 100/18 = 50/9
Таким образом, сокращенная дробь (9x^2 - 6x + 1)/(6x^2 + x - 1) при x = -1(1/6) равна 50/9.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili