
СРОЧНО НЕСКОЛЬКО ЗАДАЧ За шоколадку и мармеладку хотя-бы 2-3 !Имеется a коробок по x карандашей в
каждой. Составьте формулу для вычисления общего количества карандашей. Поезд прошёл перегон за 20 мин. За какое время он прошёл бы этот перегон со скоростью в 2 раза меньше! Распределите 320 тетрадей пропорционально числам 1: 3 : 4 Найдите неизвестный член пропорции 5 3 - = - x 1,2 Даны три числа: 20, 8 и 5 найдите такое четвертное число что-бы из этих чисел можно было составить пропорцию. Найдите все решения задачи. Отношение числа девочек к числу мальчиков в школе равно 2 : 3 сколько процентов от числа учащихся школы составляет мальчиков

Ответы на вопрос




последняя мальчиков 40 % а девочек 60 %
вторая 1+3+4 = 8
320 : на 8 = 40
1 = 40 ;2 = 120 ; 3 =160



Задача 1: Количество карандашей в коробке
Для вычисления общего количества карандашей в коробке, умножим количество коробок на количество карандашей в каждой коробке. Пусть x - количество коробок, а k - количество карандашей в каждой коробке. Тогда формула будет выглядеть следующим образом:
Общее количество карандашей = x * k
Задача 2: Время прохождения перегона поездом
Пусть t - время, за которое поезд проходит перегон со скоростью в 2 раза меньше. Тогда, если поезд прошел перегон за 20 минут, можно составить пропорцию:
20 / t = 2 / 1
Для решения этой пропорции, можно использовать правило трех пропорций:
20 * 1 = t * 2
t = (20 * 1) / 2
t = 10
Таким образом, поезд прошел бы этот перегон за 10 минут со скоростью в 2 раза меньше.
Задача 3: Распределение тетрадей
Для распределения 320 тетрадей пропорционально числам 1:3:4, нужно сначала найти общую сумму этих чисел:
1 + 3 + 4 = 8
Затем, чтобы найти количество тетрадей, соответствующее каждому числу, нужно разделить 320 на общую сумму и умножить на каждое число:
Количество тетрадей для числа 1 = (320 / 8) * 1 = 40
Количество тетрадей для числа 3 = (320 / 8) * 3 = 120
Количество тетрадей для числа 4 = (320 / 8) * 4 = 160
Таким образом, количество тетрадей для чисел 1, 3 и 4 составляет соответственно 40, 120 и 160.
Задача 4: Неизвестный член пропорции
Дана пропорция: 5:3 = x:1,2. Найдем неизвестный член пропорции x.
Для решения этой пропорции, можно использовать правило трех пропорций:
5 / 3 = x / 1,2
Умножим оба числа на 1,2, чтобы избавиться от десятичной дроби:
5 * 1,2 = 3 * x
6 = 3x
Разделим обе части уравнения на 3:
6 / 3 = x
2 = x
Таким образом, неизвестный член пропорции равен 2.
Задача 5: Четвертное число для пропорции
Даны три числа: 20, 8 и 5. Найдем такое четвертное число, чтобы можно было составить пропорцию.
Для составления пропорции, нужно сравнить отношения между числами. В данном случае, отношение между 20 и 8 равно 20/8 = 2,5, а отношение между 8 и 5 равно 8/5 = 1,6.
Чтобы составить пропорцию, отношения между числами должны быть равны. Поэтому, нужно найти такое четвертное число, чтобы отношение между 20 и этим числом было равно отношению между 8 и 5.
20 / x = 8 / 5
Умножим оба числа на x:
20 * 5 = 8 * x
100 = 8x
Разделим обе части уравнения на 8:
100 / 8 = x
12,5 = x
Таким образом, четвертное число для пропорции равно 12,5.
Задача 6: Процент мальчиков в школе
Отношение числа девочек к числу мальчиков в школе равно 2:3. Чтобы найти процент мальчиков от общего числа учащихся в школе, нужно сначала найти общее отношение числа мальчиков к общему числу учащихся.
Общее отношение равно 2 + 3 = 5.
Чтобы найти процент мальчиков, нужно разделить число мальчиков на общее число учащихся и умножить на 100:
Процент мальчиков = (3 / 5) * 100
Процент мальчиков = 60%
Таким образом, мальчики составляют 60% от числа учащихся в школе.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili