
Решение задач с помощью евадратнвх уравнений


Ответы на вопрос

ax^2+bx+c
D=b^2-4ac
(a-b)^2= (a-b)(a+b)
(a+b)^2= a^2+2ab-b^2



Solving Problems Using Quadratic Equations
Quadratic equations are equations of the form ax^2 + bx + c = 0, where a, b, and c are constants and x is the variable. These equations can be solved using various methods, such as factoring, completing the square, or using the quadratic formula.
Quadratic Formula
The quadratic formula is a widely used method for solving quadratic equations. It states that for the equation ax^2 + bx + c = 0, the solutions for x are given by: x = (-b ± √(b^2 - 4ac)) / (2a)Example of Solving a Quadratic Equation
Let's consider the quadratic equation 3x^2 + 10x + 7 = 0. We can use the quadratic formula to find the solutions for x.First, we identify the values of a, b, and c: - a = 3 - b = 10 - c = 7
Now, we can apply the quadratic formula to find the solutions for x: x = (-b ± √(b^2 - 4ac)) / (2a)
Substitute the values of a, b, and c into the formula: x = (-10 ± √(10^2 - 4*3*7)) / (2*3) x = (-10 ± √(100 - 84)) / 6 x = (-10 ± √16) / 6 x = (-10 ± 4) / 6
So, the solutions for x are: x1 = (-10 + 4) / 6 = -6 / 6 = -1 x2 = (-10 - 4) / 6 = -14 / 6 = -7/3
Therefore, the solutions for the given quadratic equation are x = -1 and x = -7/3.
This example demonstrates how the quadratic formula can be used to solve quadratic equations and find the values of the variable x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili