Вопрос задан 24.04.2018 в 19:08. Предмет Алгебра. Спрашивает Барзенкова Ксения.

СРОЧНО, ПОМОГИТЕЕЕ!!!Докажите,что сумма пяти последовательных степеней числа 3 делится на 121

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бирилкина Алина.

3^{n}+3^{n+1}+3^{n+2}+3^{n+3}+3^{n+4}=3^{n}(1+3+3^{2}+3^{3}+3^{4})= \\ 
3^{n}(1+3+9+27+81)=3^{n}*121 \\ 


Раз один из множителей делится на 121 , то и всё произведение делится на 121 . Значит сумма пяти последовательных степеней числа 3 делится на 121

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос