
Вопрос задан 28.12.2018 в 18:22.
Предмет Алгебра.
Спрашивает Попова Александра.
Доказать тождества: 1. (A х В) • rot С = В • (A• ∇) • C - А • (B • ∇) • C ; 2. (A х ∇) х В = (A• ∇)
• B + А х rotB - AdivB; A, B - вектора ∇ - набла

Ответы на вопрос

Отвечает Пономарёв Клим.
1.
[A x B] * rot C = [A x B] * [∇ x C] = {смешанное произведение} =
([A x B], ∇, C) = {циклическая перестановка не меняет результат} =
(C, [A x B], ∇) = С * [[A x B] x ∇] = C * [∇ x [B x A]] =
{формула Лагранжа для двойного векторного произведения} =
C * (B(∇*A) - A(∇*B)) = B(A*∇)C - A(B*∇)C
2.
[[A x ∇] x B] = [B x [∇ x A]] = {формула Лагранжа} =
∇(A*B) - A(∇*B) =
{ [A x [∇ x B]] = ∇(A*B) - B(∇*A) --> ∇(A*B) = [A x [∇ x B]] + B(∇*A) } =
[A x [∇ x B]] + B(∇*A) - A(∇*B) = [A x rot B] + B div A - A div B
[A x B] * rot C = [A x B] * [∇ x C] = {смешанное произведение} =
([A x B], ∇, C) = {циклическая перестановка не меняет результат} =
(C, [A x B], ∇) = С * [[A x B] x ∇] = C * [∇ x [B x A]] =
{формула Лагранжа для двойного векторного произведения} =
C * (B(∇*A) - A(∇*B)) = B(A*∇)C - A(B*∇)C
2.
[[A x ∇] x B] = [B x [∇ x A]] = {формула Лагранжа} =
∇(A*B) - A(∇*B) =
{ [A x [∇ x B]] = ∇(A*B) - B(∇*A) --> ∇(A*B) = [A x [∇ x B]] + B(∇*A) } =
[A x [∇ x B]] + B(∇*A) - A(∇*B) = [A x rot B] + B div A - A div B


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili