
Вопрос задан 10.12.2018 в 23:50.
Предмет Алгебра.
Спрашивает Костюкевич Женя.
Оочень нужно доказать,что nри n>и равно2 выполняется неравенство 1/n+1 +1/n+2+
1/n+3+....+1/2n>1/2 Заранее благодарю)

Ответы на вопрос

Отвечает Чупина Екатерина.
Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше
2n - наибольший знаменатель,
поэтому
при n≥2
1/(n+1)>1/(2n)
1/(n+2)>1/(2n)
...
и так далее
1/(n+1) +1/(n+2)+ 1/(n+3)+....+1/2n>1/(2n)+1/(2n)+...+1/(2n)=2/(2n)=1/2
2n - наибольший знаменатель,
поэтому
при n≥2
1/(n+1)>1/(2n)
1/(n+2)>1/(2n)
...
и так далее
1/(n+1) +1/(n+2)+ 1/(n+3)+....+1/2n>1/(2n)+1/(2n)+...+1/(2n)=2/(2n)=1/2


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili