
Помогите, пожалуйста. cos^2x+2(sinx)*ctgx=1,25 sinx ПО МОДУЛЮ! Это модульные скобки


Ответы на вопрос





Давайте решим уравнение \( \cos^2 x + 2 \sin x \cot x = 1.25 + |\sin x| \) пошагово.
1. Приведение к общему знаменателю: \[ \cos^2 x + 2 \sin x \cot x = 1.25 + |\sin x| \]
Заметим, что \(\cot x = \frac{\cos x}{\sin x}\). Подставим это выражение в уравнение: \[ \cos^2 x + 2 \sin x \cdot \frac{\cos x}{\sin x} = 1.25 + |\sin x| \]
2. Упрощение уравнения: \[ \cos^2 x + 2 \cos x = 1.25 + |\sin x| \cdot \sin x \]
Теперь преобразим \(\cos^2 x + 2 \cos x\) в квадратное выражение по переменной \(\cos x\): \[ (\cos x + 1)^2 = 1.25 + |\sin x| \cdot \sin x \]
3. Рассмотрение случаев для модуля: У нас есть модуль в уравнении, поэтому нужно рассмотреть два случая: \( \sin x \geq 0 \) и \( \sin x < 0 \).
- Случай 1: \( \sin x \geq 0 \) \[ (\cos x + 1)^2 = 1.25 + \sin^2 x \]
- Случай 2: \( \sin x < 0 \) \[ (\cos x + 1)^2 = 1.25 - \sin^2 x \]
4. Решение уравнений: - Случай 1: \( \sin x \geq 0 \) \[ (\cos x + 1)^2 = 1.25 + \sin^2 x \]
Решим это квадратное уравнение относительно \( \cos x + 1 \) и найдем значения \( \cos x \).
- Случай 2: \( \sin x < 0 \) \[ (\cos x + 1)^2 = 1.25 - \sin^2 x \]
Решим это квадратное уравнение относительно \( \cos x + 1 \) и найдем значения \( \cos x \).
5. Подстановка в исходное уравнение: Полученные значения \( \cos x \) подставим в исходное уравнение и проверим их на соответствие.
Это общий план действий для решения данного уравнения. Если у вас есть конкретные значения для \( \sin x \), то можно продолжить решение, учитывая эти значения.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili