
Решите уравнение 14х в квадрате+25х-84=0


Ответы на вопрос

D=b²-4ac=25²-4*14*(-84)=625+4704=5329.
x1=(-b+√D) /2a=(-25+73)/28=48/28=1,7
x2=(-b-√D) /2a=(-25-73)/28=-98/28=-3,5
Ответ:1,7;-3,5.



Конечно, давайте решим уравнение \(14x^2 + 25x - 84 = 0\).
Это квадратное уравнение, и его можно решить с использованием формулы для корней квадратного уравнения: \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), где у нас есть уравнение вида \(ax^2 + bx + c = 0\).
В данном случае: - \(a = 14\), - \(b = 25\), - \(c = -84\).
Теперь мы можем подставить эти значения в формулу и решить уравнение:
\[ x = \frac{-25 \pm \sqrt{25^2 - 4 \cdot 14 \cdot (-84)}}{2 \cdot 14} \]
\[ x = \frac{-25 \pm \sqrt{625 + 4704}}{28} \]
\[ x = \frac{-25 \pm \sqrt{5329}}{28} \]
\[ x = \frac{-25 \pm 73}{28} \]
Таким образом, у нас есть два возможных значения для \(x\):
1. Когда используется знак "плюс" (\(+\)): \[ x_1 = \frac{-25 + 73}{28} = \frac{48}{28} = \frac{24}{14} = \frac{12}{7} \]
2. Когда используется знак "минус" (\(-\)): \[ x_2 = \frac{-25 - 73}{28} = \frac{-98}{28} = \frac{-49}{14} \]
Таким образом, уравнение \(14x^2 + 25x - 84 = 0\) имеет два корня: \(x = \frac{12}{7}\) и \(x = \frac{-49}{14}\).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili