Вопрос задан 12.10.2018 в 09:41. Предмет Алгебра. Спрашивает Остапенко Максим.

Найдите наибольшее число, которое не превосходит √70

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ширшов Данил.
Ближайший точный  квадрат, не превосходящий 70, это 64

64≤70
8≤√70
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения наибольшего числа, которое не превосходит квадратного корня из 70, мы можем использовать математический метод округления.

Чтобы найти наибольшее целое число, которое не превосходит квадратного корня из 70, мы можем округлить его до ближайшего целого числа.

Квадратный корень из 70 примерно равен 8.3666. При округлении этого числа до ближайшего целого числа мы получим 8.

Таким образом, наибольшее число, которое не превосходит квадратного корня из 70, равно 8.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти наибольшее число, которое не превосходит квадратного корня из 70 (√70), мы можем использовать метод проб и ошибок. Начнем с предположения, что это целое число.

Так как 8^2 = 64 и 9^2 = 81, мы знаем, что наше число будет находиться между 8 и 9. Попробуем начать с числа 8:

8^2 = 64, что меньше, чем 70. Теперь попробуем число 9:

9^2 = 81, что больше, чем 70.

Мы видим, что наше число находится между 8 и 9. Для точного решения, мы можем использовать десятичное представление числа.

Так как 8.2^2 = 67.24 и 8.3^2 = 68.89, мы видим, что наше число будет находиться между 8.2 и 8.3.

Таким образом, наибольшее число, которое не превосходит √70, будет около 8.2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос