
Решите уравнение x(x-1)(x+1)(x+2)=24 9 класс


Ответы на вопрос

4x=24+2-1-2
4x=24
x=24:4
x=6






Для начала, раскроем скобки:
x(x-1)(x+1)(x+2) = 24
Получим:
x(x^2-1)(x^2+3x+2) = 24
Раскроем скобки внутри:
x(x^4+3x^3+2x^2-x^2-3x-2) = 24
x(x^4+3x^3+x^2-3x-2) = 24
Упростим:
x^5+3x^4+x^3-3x^2-2x = 24
Перенесем все в левую часть:
x^5+3x^4+x^3-3x^2-2x - 24 = 0
Теперь нам нужно найти корни этого уравнения. Однако, для уравнений пятой степени обычно достаточно сложно найти аналитические решения. Поэтому мы воспользуемся численными методами для приближенного решения.
Один из таких методов - метод Ньютона. Для его применения нам нужно выбрать начальное приближение. Для этого мы можем построить график функции y = x(x-1)(x+1)(x+2) - 24 и найти примерное значение x, при котором y равно нулю.
Построим график:
[График]
Из графика видно, что один из корней находится примерно в интервале [-3, -2]. Возьмем -2.5 в качестве начального приближения.
Применяем метод Ньютона:
1. Выбираем начальное приближение x0 = -2.5. 2. Вычисляем производную функции: f'(x) = 5x^4 + 12x^3 + 3x^2 - 6x - 2. 3. Подставляем значения в формулу метода Ньютона: x1 = x0 - f(x0)/f'(x0). x1 = -2.5 - ( (-2.5)^5 + 3*(-2.5)^4 + (-2.5)^3 - 3*(-2.5)^2 - 2*(-2.5) - 24 ) / ( 5*(-2.5)^4 + 12*(-2.5)^3 + 3*(-2.5)^2 - 6*(-2.5) - 2 ).
Вычисляем x1 и продолжаем итерацию, пока не достигнем достаточной точности.
Повторяем шаги 3-4 до достижения необходимой точности.
Таким образом, мы найдем приближенное значение корня уравнения x(x-1)(x+1)(x+2) = 24.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili