Вопрос задан 16.09.2018 в 15:31. Предмет Алгебра. Спрашивает Сулим Данил.

Если a=b+1 Доказать что (a+b) (a^2+b^2) (a^4+b^4) (a^8+b^8) (a^16+b^16)=a^32+b^32

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Буттер Ярослав.
Если a=b+1, то a-b=1
домножим на 1 выражение:
1*(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)(a^16+b^16)=
=(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)(a^16+b^16)=
=(a^2-b^2)(a^2+b^2)(a^4+b^4)(a^8+b^8)(a^16+b^16)=
=(a^4-b^4)(a^4+b^4)(a^8+b^8)(a^16+b^16)=
=(a^8-b^8)(a^8+b^8)(a^16+b^16)=
=(a^16-b^16)(a^16+b^16)=
=(a^32-b^32) - доказано

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы доказать, что выражение `(a+b) + (a^2+b^2) + (a^4+b^4) + (a^8+b^8) + (a^16+b^16)` равно `a^32+b^32`, мы можем использовать метод математической индукции. Давайте разобьем доказательство на несколько шагов.

Шаг 1: Проверка базового случая

Для начала, давайте проверим, выполняется ли данное уравнение для простого случая, когда `a` и `b` равны 0. В этом случ

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос