Вопрос задан 27.08.2018 в 15:16. Предмет Алгебра. Спрашивает Крайнева Маша.

Помогите срочно преобразовать выражение в многочлен:(5a+1/5b)во 2 степени(1/4m-2n)во 2 степени

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курбангелди Нурасыл.
(5a+ \frac{1}{5}b)^2=25a^2+2*5a* \frac{1}{5}b+\frac{1}{25}b^2=25a^2+2ab+\frac{1}{25}b^2\\\\(\frac{1}{4}m-2n)^2=\frac{1}{16}m^2-2*\frac{1}{4}m*2n+4n^2=\frac{1}{16}m^2-mn+4n^2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы преобразовать данное выражение в многочлен, нужно возвести каждый множитель во 2-ю степень и затем раскрыть скобки.

Выражение (5a + 1/5b) во 2-й степени: (5a + 1/5b)^2 = (5a + 1/5b)(5a + 1/5b) = 25a^2 + 2a/5b + 2a/5b + 1/25b^2 = 25a^2 + 4a/5b + 1/25b^2

Выражение (1/4m - 2n) во 2-й степени: (1/4m - 2n)^2 = (1/4m - 2n)(1/4m - 2n) = 1/16m^2 - 2n/4m - 2n/4m + 4n^2 = 1/16m^2 - n/2m - n/2m + 4n^2 = 1/16m^2 - 2n/m + 4n^2

Теперь нужно перемножить полученные многочлены: (25a^2 + 4a/5b + 1/25b^2)(1/16m^2 - 2n/m + 4n^2)

Для этого распределите каждый член первого многочлена на каждый член второго многочлена и выполните умножение:

= 25a^2 * 1/16m^2 - 25a^2 * 2n/m + 25a^2 * 4n^2 + 4a/5b * 1/16m^2 - 4a/5b * 2n/m + 4a/5b * 4n^2 + 1/25b^2 * 1/16m^2 - 1/25b^2 * 2n/m + 1/25b^2 * 4n^2

= 25a^2/16m^2 - 50a^2n/16m^3 + 100a^2n^2/16m^2 + 4a/80bm^2 - 8an/80bm + 16an^2/80b + 1/400b^2m^2 - 2n/400b^2m + 4n^2/400b^2

= (25a^2/16m^2) - (50a^2n/16m^3) + (100a^2n^2/16m^2) + (4a/80bm^2) - (8an/80bm) + (16an^2/80b) + (1/400b^2m^2) - (2n/400b^2m) + (4n^2/400b^2)

Это и есть преобразованное выражение в многочлен.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос