
Решить систему уравнений


Ответы на вопрос




Solving a System of Equations
To solve a system of equations, we need to find the values of the variables that satisfy both equations simultaneously. Let's solve the system of equations you provided:
Equation 1: x - 5xy + 4y = 0Equation 2: 2x - y = 31 To solve this system, we can use various methods such as substitution, elimination, or matrix methods. Let's use the substitution method:
1. Solve Equation 2 for x: 2x - y = 31 Solving for x, we get: 2x = y + 31 x = (y + 31)/2
2. Substitute the value of x in Equation 1: x - 5xy + 4y = 0 Substituting (y + 31)/2 for x, we get: (y + 31)/2 - 5(y + 31)/2 * y + 4y = 0
Simplifying the equation, we have: (y + 31 - 5(y + 31)y + 8y = 0 (y + 31 - 5y - 155y + 8y = 0 (y + 31 - 155y + 8y = 0 -146y + 39 = 0 -146y = -39 y = -39/-146 y = 39/146 y = 0.2671
3. Substitute the value of y back into Equation 2 to find x: 2x - y = 31 Substituting 0.2671 for y, we get: 2x - 0.2671 = 31 2x = 31 + 0.2671 2x = 31.2671 x = 31.2671/2 x = 15.6336
Therefore, the solution to the system of equations is x = 15.6336 and y = 0.2671.
Please note that the solution is rounded to four decimal places for simplicity.
Let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili