Вопрос задан 23.08.2018 в 16:10. Предмет Алгебра. Спрашивает Охонская Александра.

СРОЧНО!!! 150 БАЛЛОВ ДАМ.Найдите неизвестный член пропорции: 1) х:2цел.1/3=9,2:2,3 2)

7,2:2,4=х:4цел.1/3 3) 4цел.2/7:2цел.1/7=3,2:х
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мельцына Светлана.
1) x : (2 1/3) = 9,2 : 2,3
x : (7/3) = 4
x = 4 * 7/3 = 28/3 = 9 1/3

2) 7,2 : 2,4 = x : (4 1/3)
3 = x : (13/3)
x = 3 * 13/3 = 13

3) (4 2/7) : (2 1/7) = 3,2 : x
(30/7) : (15/7) = 2 = 3,2 : x
x = 3,2 : 2 = 1,6
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте пошагово решим каждую из пропорций:

1) \( \frac{x}{2\frac{1}{3}} = \frac{9}{2\frac{1}{3}} \)

Для начала, приведем обе дроби к общему знаменателю, который равен 3:

\[ \frac{x}{\frac{7}{3}} = \frac{27}{3} \]

Теперь упростим уравнение, умножив обе стороны на \(\frac{7}{3}\):

\[ x = \frac{27}{3} \times \frac{7}{3} \]

\[ x = 9 \times 7 \]

\[ x = 63 \]

Итак, первый неизвестный член пропорции \( x \) равен 63.

2) \( \frac{7.2}{2.4} = \frac{x}{4\frac{1}{3}} \)

Сначала упростим обе стороны:

\[ \frac{3}{1} = \frac{x}{4\frac{1}{3}} \]

Теперь приведем дробь справа к общему знаменателю 3:

\[ \frac{3}{1} = \frac{x}{\frac{13}{3}} \]

Умножим обе стороны на \(\frac{13}{3}\):

\[ x = \frac{39}{1} \]

Итак, второй неизвестный член пропорции \( x \) равен 39.

3) \( \frac{4\frac{2}{7}}{2\frac{1}{7}} = \frac{3.2}{x} \)

Сначала упростим обе стороны:

\[ \frac{30}{7} = \frac{3.2}{x} \]

Теперь решим уравнение, умножив обе стороны на \( x \):

\[ 30x = 3.2 \]

\[ x = \frac{3.2}{30} \]

\[ x = \frac{16}{150} \]

Итак, третий неизвестный член пропорции \( x \) равен \( \frac{16}{150} \).

Таким образом, ответы:

1) \( x = 63 \) 2) \( x = 39 \) 3) \( x = \frac{16}{150} \)

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос