
2(4x-1) ^{4} +3(4x-1) ^{2} -5=0 Решите уравнение методом замены переменной


Ответы на вопрос




заменим переменную
действительных корней нет



Solving the Equation Using Variable Substitution
To solve the equation 2(4x-1)^4 + 3(4x-1)^2 - 5 = 0 using the method of variable substitution, we can let u = (4x-1). This will allow us to transform the given equation into a quadratic equation in terms of u.
Substituting the Variable
Let's substitute u = (4x-1) into the equation:
2u^4 + 3u^2 - 5 = 0
Now, we have a quadratic equation in terms of u.
Solving the Quadratic Equation
We can solve this quadratic equation using the quadratic formula:
u = (-b ± √(b^2 - 4ac)) / (2a)
Where a = 2, b = 3, and c = -5.
Calculating the Discriminant
First, let's calculate the discriminant D = b^2 - 4ac:
D = 3^2 - 4*2*(-5) D = 9 + 40 D = 49
Since the discriminant is positive, the quadratic equation has two distinct real roots.
Finding the Roots
Now, we can use the quadratic formula to find the roots of the equation:
u = (-3 ± √49) / (2*2)
This simplifies to:
u = (-3 ± 7) / 4
So, the roots are:
u1 = (-3 + 7) / 4 = 1 u2 = (-3 - 7) / 4 = -2.5
Reverting to the Original Variable
Now that we have found the values of u, we can revert back to the original variable x using the substitution u = (4x-1):
For u = 1: 4x - 1 = 1 4x = 2 x = 0.5
For u = -2.5: 4x - 1 = -2.5 4x = -1.5 x = -0.375
Therefore, the solutions to the original equation are: x = 0.5 and x = -0.375.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili