Вопрос задан 14.08.2018 в 18:23. Предмет Алгебра. Спрашивает Артеева Дарина.

Решите систему уравнений методом алгебраического сложения {4х-7у=30 {4х-5у=90

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тимофеев Никита.
------------------------------

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения системы уравнений методом алгебраического сложения, нужно сложить оба уравнения, чтобы избавиться от переменной x.

(4x - 7y) + (4x - 5y) = 30 + 90

Теперь раскроем скобки и сложим подобные члены:

8x - 12y = 120

Получили новое уравнение, которое содержит только переменные x и y.

Теперь можем решить полученное уравнение относительно одной из переменных. Допустим, мы решим его относительно x:

8x = 12y + 120

x = (12y + 120) / 8

x = (3y + 30) / 2

Теперь, когда мы нашли выражение для x, можем подставить его в одно из исходных уравнений и найти значение переменной y.

Подставим x = (3y + 30) / 2 в первое уравнение:

4 * ((3y + 30) / 2) - 7y = 30

Упростим выражение:

2(3y + 30) - 7y = 30

6y + 60 - 7y = 30

- y + 60 = 30

- y = 30 - 60

- y = -30

Теперь найдем значение x, подставив y = -30 в одно из исходных уравнений:

4x - 7(-30) = 30

4x + 210 = 30

4x = 30 - 210

4x = -180

x = -180 / 4

x = -45

Таким образом, решение системы уравнений методом алгебраического сложения равно x = -45 и y = -30.

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос